Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Asian Pacific Journal of Tropical Biomedicine ; (12): 172-182, 2020.
Article in Chinese | WPRIM | ID: wpr-950308

ABSTRACT

Objective: To examine the effect of Rumex crispus (R. crispus) and Rumex sanguineus (R. sanguineus) plant extracts against isolates of Acinetobacter baumannii (A. baumannii) from wounds, including multidrug-resistant strains. Methods: Six prepared Rumex extracts were subjected to liquid chromatography-tandem mass spectrometry. Antimicrobial activity of extracts and pure compounds (catechin, quercetin, isoquercitrin, emodin, and gallic acid) was examined by a microtiter plate method, while for determination of compound binary combinations activity a checkerboard method was applied. Active fractions of extracts were detected by agar-overlay high-performance thin-layer chromatography-bioautography assay followed by liquid chromatography-diode array detection-mass spectrometry analysis. Results: A total of 28 compounds were detected in two extracts of R. crispus and 26 compounds in four different R. sanguineus extracts, with catechin as a dominant component. Anti-A. baumannii activity was confirmed for all six R. sanguineus and R. crispus extracts at the concentration range from 1 to 4 mg/mL. Neither examined single compounds nor their binary combinations exhibited an anti-A. baumannii activity (MIC>256 μg/mL). The bioautography showed that fractions with the most prominent anti-A. baumannii activity tended to contain more polar compounds, predominantly flavonol (quercetin and kaempherol) glycosides; but also fractions containing flavanone (eriodictyol) glycosides and anthraquinone (emodin) glycosides; and less polar eriodictyol aglycone. Conclusions: The results justify and elucidate the traditional application of R. sanguineus and R. crispus extracts for wound healing, indicating the necessity for their further examination in combat against multidrug-resistant A. baumannii isolates from wounds. Aleksic Sabo Verica 1 Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina Svircev Emilija 2 Department of Chemistry, Biochemistry and environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina Mimica-Dukic Neda 3 Department of Chemistry, Biochemistry and environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina Orcic Dejan 4 Department of Chemistry, Biochemistry and environmental protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina Narancic Jelena 5 Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina Knezevic Petar 6 Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Vojvodina Almasaudi SB. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J Biol Sci 2018; 25(3): 586-596. Xie R, Zhang XD, Zhao Q, Peng B, Zheng J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg Microbes Infect 2018; 7(1): 31. da Silva KE, Maciel WG, Croda J, Cayô R, Ramos AC, de Sales RO, et al. A high mortality rate associated with multidrug-resistant Acinetobacter baumannii ST79 and ST25 carrying OXA-23 in a Brazilian intensive care unit. PLoS One 2018; 13(12): e0209367. Zhou H, Yao Y, Zhu BQ, Ren DH, Yang Q, Fu YQ, et al. Risk factors for acquisition and mortality of multidrug-resistant Acinetobacter baumannii bacteremia: A retrospective study from a Chinese hospital. Medicine (Baltimore) 2019; 98(13): e14937. Zarrilli R, Crispino M, Bagattini M, Barretta E, Di Popolo A, Triassi M, et al. Molecular epidemiology of sequential outbreaks of Acintobacter baumannii in an intensive care unit shows the emergence of carbapenem resistance. J Clin Microbiol 2004; 4: 946-953. Seward RJ, Lambert T, Towner KJ. Molecular epidemiology of aminoglycoside resistance in Acinetobacter spp. J Med Microbiol 1998; 47: 455-462. Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2006; 2: e7. Isler B, Doi Y, Bonomo RA, Paterson DL. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother 2018; 63(1): e01110-e01118. Intorasoot A, Chornchoem P, Sookkhee S, Intorasoot S. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii. JIntercult Ethnopharmacol 2017; 6(2): 218-222. Tiwari V, Roy R, Tiwari M. Antimicrobial active herbal compounds against Acinetobacter baumannii and other pathogens. Front Microbiol 2015; 18(6): 618. Aleksic V, Mimica-Dukic N, Simin N, Nedeljkovic NS, Knezevic P. Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine 2014; 21(12): 1666-1674. Newman DJ, Cragg GM. Natural products as source of new drugs over the last 25 years. J Nat Prod 2007; 70: 461-477. Vasas A, Orbán-Gyapai O, Hohmann J. The genus Rumex: Review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2015; 175: 198-228. Denes A, Papp N, Babai D, Czúcz B, Molnár Z. Ehetö, vadon termö növények és felhasználásuk a Kárpát-medencében élö magyarok körében néprajzi és etnobotanikai kutatások alapján. In: Andrea D (ed.) Ehetö vadnövények a Kárpát-medencében. Janus Pannonius Múzeum, Pécs; 2013, p. 35-76. Butura V. Romanian ethnobotany encyclopedia [in Romanian]. Bucharest, Romania: The Scientific and Encyclopedic Publishing; 1979. Baskan S, Daut-Özdemir A, Günaydin K, Erim FB. Analysis of anthraquinones in Rumex crispus by micellar electrokinetic chromatography. Talanta 2007; 71: 747-750. Shiwani S, Kumar Singh N, Hyeon Wang M. Carbohydrase inhibition and anti-cancerous and free radical scavenging properties along with DNA and protein protection ability of methanolic root extracts of Rumex crispus. Nutr Res Pract 2012; 6(5): 389-395. Pareek A, Kumar A. Rumex crispus L.-a plant of traditional value. Drug Discovery 2014; 9: 20-23. Ahmed SS, Erum S, Khan SM, Nawaz M, Wahid A. Exploring the medicinal plants wealth: A traditional medico-botanical knowledge of local communities in Changa Manga Forest, Pakistan. Middle-East. J Sci Res 2014; 20: 1772-1779. Moerman D. Native American ethnobotany. Timber Press; 2003. Suh HJ, Lee KS, Kim SR, Shin MH, Park S, Park S. Determination of singlet oxygen quenching and protection of biological systems by various extracts from seed of Rumex crispus L. J Photoch Photobiol B 2010; 102(2): 102-107. Idris A, Wintola OA, Afolayan AJ. Phytochemical and antioxidant activities of Rumex crispus L. in treatment of gastrointestinal helminths in Eastern Cape Province, South Africa. Asian Pac J Trop Biomed 2017; 7(12): 1071-1078. Cornara L, La Rocca A, Marsili S, Mariotti MG. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J Ethnopharmacol 2009; 125(1): 16-30. Clinical Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 7th ed. Approved Standard M7-A7. CLSI, Wayne, PA; 2006. Knezevic P, Aleksic V, Simin N, Svircev E, Petrovic A, Mimica-Dukic N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J Ethnopharmacol 2016; 178: 125-136. Orčiė D, Franciškovi M, Bekvalac K, Svirčev E, Beara I, Lesjak M, et al. Quantitative determination of plant phenolics in Urtica dioica extracts by high-performance liquid chromatography coupled with tandem mass spectrometric detection. Food Chem 2014; 143: 48-53. Yildirim A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 2001; 49(8): 4083-4089. Idris OA, Wintola OA, Afolayan AJ. Evaluation of the bioactivities of Rumex crispus L. leaves and root extracts using toxicity, antimicrobial, and antiparasitic assays. Evid-Based Compl Alt Med 2019. ID 6825297. Gradisar H, Pristovsek P, Plaper A, Jerala R. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J Med Chem 2007; 50(2): 264-271. Mabe K, Yamada M, Oguni I, Takahashi T. In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob Agents Chemother 1999; 43(7): 1788-1791. Hamilton-Miller JMT. Chemical and biological properties of tea infusions. Frankfurt: U&M, Germany; 1997, p. 63-75. Yoda Y, Hu ZQ, Zhao WH, Shumamura T. Different suscepttibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J Infect Chemother 2004; 10(1): 55-58. Nitiema LW, Savadogo A, Simpore J, Dianou D, Traore AS. In vitro antimicrobial activity of some phenolic compounds (coumarin and quercetin) against gastroenteritis bacterial strains. Int J Microbiol Res 2012; 3(3): 183-187. Razavi SM, Zahri S, Zarrini G, Nazemiyeh H, Mohammadi S. Biological activity of quercetin-3-O-glucoside, a known plant flavonoid. Bioorg Khim 2009; 35(3): 376-378. Ajiboye TO, Skiebe E, Wilharm G. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance. Biomed Pharmacother 2018; 101: 737-744. čurkovič-Perica M, Hrenovič J, Kugler N, Goič-Barišič I, Tkalec M. Antibacterial activity of Pinus pinaster bark extract and its components against multidrug-resistant clinical isolates of Acinetobacter baumannii. Croatia Chemica Acta 2015; 88(2): 133-137. Chukwujekwu JC, Coombes PH, Mulholland DA, van Staden J. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. S Afr J Bot 2006; 72(2): 295-297. Coopoosamy RM, Magwa ML. Antibacterial activity of aloe emodin and aloin A isolated from Aloe excelsa. Afr J Biotech 2006; 5(11): 1092-1094. Betts JW, Hornsey M, Wareham DW. In vitro activity of epigallocatechin gallate (EGCG) and quercetin alone and in combination versus clinical isolates of methicillin-resistant Staphylococcus aureus. ASM 2014 Barts and the London, School of Medicine and Dentistry, UK; 2014. Mhalla D, Bouaziz A, Ennouri K, Chawech R, Smaoui S, Jarraya B, et al. Antimicrobial activity and bioguided fractionation of Rumex tingitanus extracts for meat preservation. Meat Sci 2017; 125: 22-26. Eloff JN, Katerere DR, McGaw LJ. The biological activity and chemistry of the southern African Combretaceae. J Ethnopharm 2008; 119: 689699. Idris AO, Wintola AO, Afolayan AA. Phytochemical and antioxidant activities of Rumex crispus L. in treatment of gastrointestinal helminths in Eastern Cape Province, South Africa. Asian Pac J Trop Biomed 2017; 7(12): 1071-1078. Singh M, Purohit MC. Anti-inflammatory activity of methanolic extract of roots of Rumex obtusifolius. Int J Pharm Sci & Res 2018; 9(8): 35193522.

SELECTION OF CITATIONS
SEARCH DETAIL